Global gene expression analysis of rodent motor neurons following spinal cord injury associates molecular mechanisms with development of postinjury spasticity.
نویسندگان
چکیده
Spinal cord injury leads to severe problems involving impaired motor, sensory, and autonomic functions. After spinal injury there is an initial phase of hyporeflexia followed by hyperreflexia, often referred to as spasticity. Previous studies have suggested a relationship between the reappearance of endogenous plateau potentials in motor neurons and the development of spasticity after spinalization. To unravel the molecular mechanisms underlying the increased excitability of motor neurons and the return of plateau potentials below a spinal cord injury we investigated changes in gene expression in this cell population. We adopted a rat tail-spasticity model with a caudal spinal transection that causes a progressive development of spasticity from its onset after 2 to 3 wk until 2 mo postinjury. Gene expression changes of fluorescently identified tail motor neurons were studied 21 and 60 days postinjury. The motor neurons undergo substantial transcriptional regulation in response to injury. The patterns of differential expression show similarities at both time points, although there are 20% more differentially expressed genes 60 days compared with 21 days postinjury. The study identifies targets of regulation relating to both ion channels and receptors implicated in the endogenous expression of plateaux. The regulation of excitatory and inhibitory signal transduction indicates a shift in the balance toward increased excitability, where the glutamatergic N-methyl-d-aspartate receptor complex together with cholinergic system is up-regulated and the gamma-aminobutyric acid type A receptor system is down-regulated. The genes of the pore-forming proteins Cav1.3 and Nav1.6 were not up-regulated, whereas genes of proteins such as nonpore-forming subunits and intracellular pathways known to modulate receptor and channel trafficking, kinetics, and conductivity showed marked regulation. On the basis of the identified changes in global gene expression in motor neurons, the present investigation opens up for new potential targets for treatment of motor dysfunction following spinal cord injury.
منابع مشابه
The Expression implication of GDNF in ventral horn and associated remote cortex in rhesus monkeys with hemisected spinal cord injury
Objective(s): Glial cell line-derived neurotrophic factor (GDNF) can effectively promote axonal regeneration,limit axonal retraction,and produce a statistically significant improvement in motor recovery after spinal cord injury (SCI). However, the role in primate animals with SCI is not fully cognized. Materials and Methods:18 healthy juvenile rhesuses were divided randomly into six groups, obs...
متن کاملGene expresion in rodent spinal neuronal populations and their response to injury
Motor neurons are the centre of convergence for all neural activity relating to movements. The activity integrated in the motor neurons is transmitted to appropriate muscles generating coordinated muscle contractions. Motor neurons, long considered passive integrators of the motor signal, have been shown to actively participate in shaping the output to the muscles during different behaviors, wh...
متن کاملMinocycline Enhance Restorative Ability of Olfactory Ensheathing Cells by Upregulation of BDNF and GDNF Expression After Spinal Cord Injury
Purpose: Spinal cord injury is a global public health issue that results in extensive neuronal degeneration, axonal and myelin loss and severe functional deficits. Neurotrophic factors are potential treatment for reducing secondary damage, promoting axon growth, and are responsible for inducing myelination after injury. Olfactory ensheathing cells (OECs) and minocycline have been shown to promo...
متن کاملCellular and Molecular Mechanisms Involved in Neuroinflammation after Acute Traumatic Spinal Cord Injury
Introduction: Spinal cord injury (SCI) following traumatic events is associated with the limited therapeutic options and sever complications, which can be partly due to inflammatory response. Therefore, this study aims to explore the role of inflammation in spinal cord injury. The findings showed that the pathological conditions of nervous system lead to activation of microglia, astrocyte, neut...
متن کاملA Review of the Occurrence and Mechanisms of Induction of Osteoporosis Following Spinal Cord Injury
Introduction: Spinal cord injury (SCI) causes devastating injuries in patients. The main mechanisms of the pathogenesis of secondary injury include nerve degeneration, gliosis, and inflammation. Spinal cord injury induces a disorder or failure in several organs due to the vital role of the spinal cord in regulating bodily functions. Osteoporosis is a consequence of spinal cord injury that occur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 103 2 شماره
صفحات -
تاریخ انتشار 2010